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Abstract

We make an introduction to the superfluidity phenomenon, focusing on the particular
case of helium-II. Before this, we discuss the basics of Bose-Einstein condensation since this
provides a better understanding of superfluidity as a quantum phenomenon. Additionally, we
comment and justify the unique properties of He-II by performing our own simulation of the
superfluid in which we observe some of these behaviors.
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1 Bose-Einstein condensates

Before even talking about superfluids, we begin by investigating a quantum phenomenon called
Bose-Einstein condensation. In essence, a Bose-Einstein condensate is a many-particle system
which, due to certain conditions, can be described by a macroscopic wave function. The system
exhibits properties different to classical solids, liquids and gases and thus is an entirely new state
of matter.

In 1924 Satyendra Nath Bose was the first to study systems of particles with a symmetric wave
function, now called bosons. He studied their statistical behavior and also considered the possi-
bility of cooling down such a system to very low temperatures. He sent his work to Einstein for
translation, who recognized the value of his efforts and agreed to translate the paper to German,
also making his own contributions. Later, in 1938, Fritz London proposed that Bose and Einstein’s
ideas could apply to liquid helium and could be mechanism for its superfluidity.

1.1 Bose-Einstein statistics

Let us first consider a system of N bosons that do not interact with each other. Each individual
particle can occupy one of several quantum states A each with an energy ). A may consist of one
or multiple quantum numbers. Let n) be the number of particles in the state A.

In Bose’s paper, he determined an expression for the expected value of n;, different to the
Boltzmann distribution, because he used the fact that the particles are indistinguishable. For
example, suppose we have two coins with two possible energy states, heads and tails. Classically,
there are four possible scenarios, but for bosons, there are just three: HH, HT and TT (HT and
TH are the same!) Thus some states are counted less than would be expected from a classical
point of view. The Bose distribution is given by:

B 1
(na) = elex—m)/(ksT) — |

Here p is the chemical potential and 7' the temperature of the system.

1.2 1deal BEC

Now let us consider the system at low temperatures. We can write the wave function of the system
as a product of individual wave functions:

U(ry, ., N) = @5, (1) - sy (TN)

This isn’t entirely correct, however. Since the particles are bosons, the wave function ¥ must be
symmetric. We can amend this by symmetrizing our function:

U(ry,...,ry) o« Z P51 (To(1)) - Psy (To(n))

Where o is summed over the permutations of N objects. The proportionality factor can be deter-
mined if necessary.

For large N, the previous expression quickly becomes unwieldy and difficult to deal with. Fortu-
nately there exists an alternative formalism of quantum mechanics, called second quantization,
that greatly simplifies the treatment of many-particle systems. In ‘first quantization’, the system



is expressed in terms of each particle j being in the state s;: ¢, (r;). In second quantization, how-
ever, we forget about the individuality of the particles and simply talk of how many particles are
in each possible state. This is natural because the particles are indistinguishable anyway, and so
we don’t need to worry about symmetrizing (or antisymmetrizing for fermions) the wave function
any more.

Let 95 be the wave function for a single-particle system with the state A. {1y is then a complete
basis of wave functions. Now, the basis of states in second quantization are described by the set
of non-negative integers {ny}, the occupation numbers. If we fix the total number of particles, N,
we require ), ny = N.

What is the probability density of the state {n)} at a point r? For every state, there are n)
particles in that state, and a probability density of ¥%(r)i,(r) for every particle (assuming the
’s are normalized). So in total it will be P(r) = Y=, nypx (r)ia(r).

Now our system is a Bose-Einstein condensate if it is at a low enough temperature that a large
number of the particles are in the ground state, i.e. ng ~ N. This point is called the critical
temperature of the condensate. In this case, P(r) is determined mostly by the component
noY§yo, and the others are small fluctuations which vanish as the temperature approaches 0. If
we define Wo(r) = /ngtyo, then the BEC is described in large part as if it were a single-particle
system; thus, ¥q is called the macroscopic wave function.

1.3 Interacting BEC

So far we have only been considering an ideal Bose gas with no interactions. In reality, the bosons
do interact with each other. In 1956, Oliver Penrose and Lars Onsager proposed a criterion for
when BEC occurs in general Bose gases. Essentially, it so happens that similar to the occupation
numbers ny and the basis functions ¢y, one can define a certain series of numbers a;y and functions
¢ that are eigenvalues and eigenfunctions of a certain operator, and that they coincide with the
ny’s and the ¥,’s for an ideal Bose gas. The Penrose-Onsager criterion, then, is that aq is close
to N. In this case, the macroscopic wave function is /o go.

1.4 Basic properties

The fraction of particles in the ground state, ng/N can be determined statistically from the Bose-
Einstein distribution. It only depends on the temperature, since this determines the average energy
per particle. In 1995, when a BEC was created for the first time, this was experimentally confirmed
(figure 1).
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Figure 1: The condensate fraction of trapped rubidium atoms as a function of the temperature.

The solid line shows the theoretical prediction, and the points represent the experimental data.
Source: [JREC96]

Thus we can think of this state of matter as having two components: the condensate, which
consists of the particles in the ground state, and everything else, which create thermal fluctua-
tions. Since the condensate is described by a single wave function, it has a coherent flow and no
collisions, thus being frictionless. Additionally, since there is only one possible energy state for it
to be in (all of the particles in the ground state), its entropy is zero. Thus all the entropy is carried
by the excitation part. We will see how these properties are relevant when we come to superfluidity.

Figure 2: These graphs show the velocity distribution of the rubidium atoms at different tem-
peratures in the same experiment. Left: 400 nK, just before the appearance of the BEC. Middle:
200 nK, just under the critical temperature. Right: 50 nK, the system is almost a pure condensate.

This confirms the coherent flow due to the macroscopic wave function.
Source: [JREC96]

Nikolay Bogolyubov showed that for temperatures not too close to T one can make the ap-
proximation that the excitations behave like an ideal gas of quasiparticles, which are quantised
Bogolyubov excitations. For details, see [BSP22] (1.1.4).



1.5 Vorticity

Another very striking property of BECs and also of superfluids is quantum vorticity. Take a
superfluid at rest, and start rotating it, slowly accelerating. At first the liquid will simply stay at
rest and not move at all. When a certain critical velocity is exceeded, however, small tornadoes
will be visible in the fluid: these are the quantum vortices.

Later we will see that the superfluid is irrotational. Isn’t this a contradiction with quantum
vortices? No, because when a vortex occurs, a ‘hole’ appears in the macroscopic wave function,
and the circulation of the velocity, kK = fc v around the hole is non-zero (Stokes’ theorem cannot
be applied). The word quantum here means that & is discrete, and in particular a multiple of h/m.

As a side note, this year quantum vortices have been experimentally observed for the first time
in a supersolid, specifically made of dysprosium. (A supersolid presents many of the properties
of superfluids, e.g. frictionless motion and quantum vortices, but retaining a more fixed atomic
structure.)

1.6 Dynamics

Physicists Eugene Gross and Lev Pitaevskii deduced an equation that governs the macroscopic
wave function of a pure condensate, that is, at 7" = 0. In this idealized system, the interaction
between atoms is a contact potential (i.e. proportional to é(r — r’) with § the Dirac delta). It is
called the Gross-Pitaevskii equation or the non-linear Schrédinger equation:

drh2a L OV

|U|20 = ih—

m ot
Where V¥ is the macroscopic wave function, V is an external potential and a is a parameter

that represents the strength of the contact potential.

h
——VU+ VU +
2m

An alternative way to model the dynamic behavior of the system is to find equations for its
‘density’ and ‘velocity’, similar to the way it is done in fluid dynamics, as we will see later. Recalling
that P(r) = |[¥o(r)|?, it makes sense to call this the density of the condensate, n. It turns out that
from the Gross-Pitaevskii equation one can deduce that:

on
E—I—V-(nv)—o

where v is some function equal to:

_ h U VU — UV
- 2mi |U|2

Now, as we will see in 3.1, the equation above is very similar to the continuity equation of a fluid.
Thus, it makes sense to identify the field v with the velocity of the fluid. It can be verified that
V x v =0, that is, we are talking of an ideal (irrotational) fluid that has a potential flow. In fact,
it can be deduced, that the potential flow is in particular caused by the chemical potential:

Dv  ov

1

The derivations in this section are made, for instance, in [Tem] (1.4-1.5).



2 The discovery of superfluidity and its properties

2.1 Helium-II, an introduction

One of the most important properties of helium is that it cannot freeze at ambient pressure (25
atmospheres are required). It remains liquid for near-zero temperatures, contradicting the classi-
cal theory of matter. The explanation for this unique behavior lies in the Heisenberg uncertainty
principle whose effects alter the energy of the system. This quantum principle gains importance
for atoms with low mass and low potential, which is especially the case for the lightest of the
noble gases. In such a way, at these scales, there is a kind of kinetic equilibrium for the so-called
zero-point motion characterized by the minimum average total (potential + kinetic) energy.

As we shall see, the existence of superfluids such as liquid helium and, in particular, the strange
mass and heat transfer mechanism they exhibit directly indicate that they represent a macroscopic
system with some quantum properties because at these temperatures the mean thermal (kinetic)
energy becomes so small that the mean de-Broglie wavelength A = h/p assumes a value of the order
of the minimum molecular distance. So, the classical theory is incompetent and that presumably
quantum mechanisms are relevant to their constitution as a whole.

Pioneers in cryogenics were interested in the problem of minimizing the temperature of helium.
The first to liquefy helium at 4.2 K was Heike Kamerlingh in 1908. A couple of years later, he
realized that below 2.17 K the violent boiling process disappeared radically, although there is still
a phase change to vapor. In the same line, he found that it starts to expand instead of continuing
to contract when temperature drops below this set value, thus deviating from the behavior of other
substances.

The disappearance of the bubbles implies that there is no longer an irregular temperature dis-
tribution in the liquid. Now, if we place an electrical resistor in the helium below 2.17 K, it will
dissipate the heat efficiently enough so that no bubbles appear.

This new state of helium became known as “Helium-II”. Willem Hendrik discovered that
Helium-II was the best thermal conductor of all known materials, capable of flattening any thermal
gradient. It has been shown that thermal conductivity of He-II is approximately 200 times higher
than copper’s conductivity.

On the other hand, Kamerlingh Onnes and Leo Dana found that cooling was more difficult near
the transition because of the sudden increase in specific heat. This phenomenon led to Keesom
and Wolk in 1928 to define the terminology “helium I” and “helium II”, for the heater and cooler
states respectively, suggesting the idea of a kind of allotropic modification. The silhouette of the
specific heat peak gave the phase change between He-II and He-I its name: the lambda transition,
which is the sharpest phase transition known to us. This result can be related to conclusions from
the study of the specific heat of Bose gases near Bose-Einstein condensate temperatures.



ISR SR TR T TN SR TR S SN T T SN AT SO A T TR MY SO S Y

Upper A point
tTm;”I.TE"K. 29.8 atm.) 5 -
4 -
E o
H : '~
= o A-line o 3 N
Liguid Hel =
&
101~ Liquid HeTl Critical point 2 L

A point (T = 5.200K, 2.264 atm.]
I (T = 2.1729K, 0.0497 atm)

s

[
'
I
'
I
1
'
1
I
|
1
|
'
I

T
'
I
I
!

] ! —
o ] et g Feges |
Q 1.0 2.0 3.0 4.0 5.0 6.0
TIoK} 0
LA B L B L L B L L L L L L LB I
The phase diagram of He*. 1 2 3 4 i

T [K]

(a) Allocation of the four states of helium in the P-T  (b) Specific heat of liquid helium under its own vapor

plane pressure.
Source Source

Figure 3

2.2 Superflow

In 1930 Keesom and Van der Ende observed quite accidentally that liquid He-II passed with very
annoying ease through extremely small leaks which at a higher temperature were perfectly tight
for liquid He-I and even for gaseous helium.

But it was not until 1938 that the most important property of He-II was studied quantita-
tively. Researchers Jack Allen and Donald Misener, on the one hand, and Pjotr Kapitza, on the
other, conducted experiments on the flow of He-II to conclude that it can flow without viscosity.
It turns out that at temperatures below the lambda temperature, this substance presents (with
current experiments) no difficulty in passing through capillaries of the order of nanometers. This
phenomenon was named superfluidity. The ideal fluid behavior adds to the arguments in favor of
He-II having a Bose condensate of He atoms.

We could conclude that this phenomenon is due to the disappearance of viscosity. However,
nature is not so simple. Experimentally, using a viscometer, a gradual (not sudden) drop in vis-
cosity is observed starting at 7).

The effects of this phenomenon will be discussed in more detail in future chapters.

2.3 Thermal Superconductivity

In 1936 Keesom and Miss Keesom noticed an enormous increase of heat exchange as liquid helium
passes through the A-point. In 1937 Allen, Peierls and Uddin first noticed that the heat current
is liquid He-II is not proportional to the temperature gradient (violating the Fourier Law). In
particular, it was shown to depend on the temperature of the liquid. More experimental evidence,
such as the fact that at any rate the heat current depended on the slit width through which the
liquid passed in a way that rules out a description by a heat conductivity equation.

Heat must be transported in another previously unknown way, a new mechanism. Thermal


https://advance.sagepub.com/users/5026/articles/7698-analysis-of-first-second-and-fourth-sound-modes-in-a-helium-4-superfluid
https://www.researchgate.net/figure/Specific-heat-capacity-c-p-of-liquid-helium-at-saturated-vapor-pressure-as-a-function-of_fig6_264861371

superconductivity is uniquely linked to superfluids, being as characteristic as superfluidity itself.
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Figure 4: Heat transfer coefficient from a metal surface to liquid helium
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2.4 Entropy

By examining the phase diagram on P-T plane 3a, we can observe more conspicuous properties.
Probably the most striking one might be the absence of a triple point between the solid, liquid and
gaseous states. Instead are actually two triple points, at the ends of the A-line which separates
liquid He I from He II.

In addition, another peculiarity is that melting curve seem to approach T = 0 at a pres-
sure of about 25 atm flattening in a asymptotic way. From the Clausius-Clapeyron equation
dP,,/dT = (Siiqg — Ssot)/ (Viig — Vsot) where P, is the melting pressure curve, it follows that at 1
K the entropy of the liquid must be practically equal to entropy of the solid, as dP,,,/dT =0 —>
AS=0 = Sliq = Seol-

Hence, it seems as if between 2.2 K and 1 K liquid helium loses all entropy characteristic of
the disorder of the ordinary liquid state.

Solid helium cannot be melted isothermally by supplying heat to the system, since there is no
heat of melting. Close to absolute zero, solidification and melting are purely mechanical processes
as no entropy change is involved in this transition.
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2.5 Viscosity paradox

In 1938 Keesom and Macwood measured the viscosity with the rotation disk method and showed
that the viscosity varies continuously, decreases with decreasing temperature quite considerably,
and is certainly not very different from the viscosity of He-I. In 1938 Kapitza (and independently
Allen and Misener 1938) reported measurements based on the capillary flow method which showed
the viscosity of liquid helium dropping by many orders of magnitude to an immeasurably small
value. These experiments certainly did not indicate the presence of a viscous, laminar or turbulent
flow. They cannot be discussed on the basis of the ordinary differential equation of hydrodynamics.

At absolute zero, where the system is in its lowest (single) quantum state, melting must then
consist in an adiabatic transformation of this quantum state. Even at finite temperatures, at which
liquid He-IT has some entropy, there is a very peculiar transfer process by which at least a part of
the liquid can slip through the finest cracks and extremely narrow slits and capillaries, which for
normal liquids are, in effect, impassable (figure 5a). This apparent zero viscosity is referred to as
superfluidity.

We could try to interpret this nested behavior as a solid with such a high molecular volume
that actually can flow.

However, in other experiments, such as measuring the torque of a rotating disk submerged in
a tank of liquid helium, the existence of a non-zero viscosity was proved, contradicting the results
of the capillary flow (figure 5b).

ST

: (b) Rotating disk experiment. Spinning disk sub-
(a) Superfluid Helium drips as it flows through the merged in liquid Helium is able to transfer angular

capillaries momentum to the top wheel.
Source: El Hormiguero Source: Alfred Leitner Liquid Helium II the Superfluid

Figure 5: Inviscid versus viscous behaviour of He-IT

With this contradiction arises the first paradox. This substance, depending on the experiment
performed, shows ideal (inviscid) or real (viscous) fluid behavior. But, as might be expected, the
reality is more convoluted. Let’s dig a little deeper.

This system does not represent a liquid in the ordinary sense. Unlike an ordinary liquid, there



are no potential barriers to overcome when an external stress is applied. In this respect, there
seems to be a greater similarity to a gas than we are used to assume in ordinary liquids. This view
is supported by the extremely significant fact that liquid He-I, which at first sight appears to be
quite an ordinary viscous liquid, actually has a viscosity of a type ordinarily found only in gases
and not in liquids.

In ordinary liquids, the momentum transport proceeds over obstacles presumably formed by
the interlocking force field of neighboring molecules. This can be derived from the fact that the
viscosity of normal liquids has a large negative temperature coefficient, indicating that the passage
of molecules between their neighbors is greatly aided by thermal excitation. nquia ~ eA/BT where
A is the activation energy.

This liquid-type or dynamic viscosity is characteristically different from the gas-type or kinetic
viscosity. In a gas, the transport of momentum proceeds without obstruction over the mean free
path. It is proportional to the average momentum of the molecules and thus proportional to the
square root of the temperature. 1445 ~ pUl ~ VT where 7 = average molecular velocity, [ = mean
free path, p = density. According to this formula, the viscosity of a gas increases with temperature.

As shown in figure 6a, the temperature coefficient of liquid He I is clearly positive and, hence,
of the type usually shown only by gases. The viscosity of the liquid is only about 3 times that
of that vapor, although its density is greater by a factor of 800: 7ge gas = 0.8 X 107° poise and
NHe 1 = 2.5 X 107° poise.
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Because of this exceptional large molar volume, liquid helium under low pressure might reason-
ably be contemplated from a point of view that emphasizes, more than usual with other liquids, the
similarity to a gas. Only under sufficiently high pressure does liquid He-I behave like an ordinary
liquid.

It appears that some aspects of liquid helium can be qualitatively explained by some classical
models, but by putting the pieces together, nothing more than a paradoxical, counterintuitive
chimera is obtained.

2.6 Notes on the Lambda transition

Ehrenfest, considering especially the A-transition of liquid helium and the specific heat discontinu-
ity of superconductors, introduced a general classification of “phase transitions of higher order”.
He speaks of a transition of the nth order if the Gibbs potential G(P,T') has, at the transition line
P(T), a discontinuity of its nth partial derivatives, but not of a lower order derivative.

The first order transitions are the ordinary phase transitions with a transition heat ac-
companied by a change of molar volume, both quantities being connected with the slope of the
transitions curve P(T') by the Clausius-Clapeyron equation dP/dT = AS/AV where AS and AV
refer to the entropy and volume difference at the transitions in question. This relation follows
directly from the continuity of the Gibbs potential at the transition line.

For the second order transitions, not only AG but also AS and AV are zero along the
transition line. This has the consequence that dP/dT = ACp/(TV) = Aap/Axr where Cp is the
specified heat at constant pressure, ap is the thermal expansion coefficient at constant pressure,
and xr is the isothermal compressibility. Hence here only Cp, ap and xp are discontinuous.

Similar relations can be derived for higher order transitions. Although this classification ap-
pears to be quite general, it is difficult to apply to the A-transition of liquid helium, although it
was with just this transition in mind that the whole classification was devised.

As we had anticipated, in contrast to ordinary phase transitions, the transition from He-II
to He-I was shown to not be accompanied by a latent heat. Later on, in 1932, specific heat
measurements by Keesom and Clausius showed a singularity of the specific heat curve with the
characteristic letter lambda shape profile.

The lambda-point occurs in many substances. It consists in transitions of second order which
are characterized by vanishing latent heat and the above-mentioned sort of singularity of specific
heat. They usually occur whenever some type of order is gradually destroyed with rising tempera-
ture, until, at some well-defined “transition temperature” the last vestige of this order disappears.
A very well-studied example of this anomaly is the ferromagnetic Curie point of the metals of the
iron group (figure 7a).

10
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Figure 7

However, the classical example of the A-point of liquid helium does not seem to admit an ex-
planation in terms of any mechanism of this kind; the helium atoms are just too symmetrical to
achieve an order-disorder transition, say, by virtue of an orientation like that of the NH, tetrahedra
of the ferromagnetic dipole alignment. Nor can a pure substance like helium establish anything
like the type or order of binary alloys. Liquid helium seems to be too simple to have a A-point!

In fact, Bose-Einstein condensates also experience a lambda transition at the critical temper-
ature. The interpretation of why this is the case could be that this transition, instead of being
caused by the order-disorder transition in position space as for other substances, for Bose-Einstein
condensates the transition occurs in momentum space. For a Bose gas of helium 4 atoms, one cal-
culates lambda transition temperature of T = 2.16 K which is extremely close to the experimental
lambda temperature Th = 2.17K ([Krul5]).

3 The two-fluid model

As we have seen in previous sections, Helium-II presents an apparent contradiction in its behavior
under lambda temperature. In particular, depending on the experiment, it acts in a viscous or ideal
manner. This “duality” may remind the reader of the wave-particle duality present in quantum
mechanics. In fact, this is the culprit.

11
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Laszlo Tisza introduced for the first time in 1938 the “two fluid model” of superfluidity. Tisza
published the basics of his model as a note in Nature. In 1941, Lev Landau reformulated this
model in a more rigorous manner. The idea of a mixture of two fluids with independent velocities
was consolidated with successive experimental research. Their prediction of the existence of heat
waves, as a consequence of the model, was also confirmed. After this, it took several decades for
the superfluidity of liquid helium to be fully understood.

The Landau-Tisza model that we derive in this section is formulated in terms of five quantities
(superfluid density ps, normal density p,,, superfluid velocity vs, normal velocity v, and entropy
density s). We immediately deduce four evolution equations, namely, the continuity equation,
balance of momentum, evolution of superfluid velocity, and entropy balance. Since we have more
variables than equations, we set a dependence on the ratio p, /p on temperature.

However, the distinction between these two densities is not completely real. It actually goes
against the nature of superfluid helium-II, which is a single fluid with two motions, as expressed
by Landau: “It must be particularly stressed that we have here no real division of the particles of
the liquid into ‘superfluid’ and ‘normal’ ones.”

It must be mentioned that the model has several limitations. For instance, it does not allow
for non-zero superfluid vorticity, which will not be treated here.

3.1 Introduction to classical fluid dynamics

Before delving into the equations of the two-fluid model, let us first get a brief overview of the
equations that govern classical fluids. The classical theory of fluid dynamics generally assumes that
the fluid is continuous and indivisible. This is of course not true since it is composed of molecules,
but at human scales, where we are talking about 1023 particles, it turns out to be an excellent
approximation.

We take the fluid to be located in a region V of space. Its state is described by the vector field
of velocities v and the density field p. We can then describe its motion through a series of partial
differential equations. Because we are assuming the fluid is continuous, we can suppose that v and
p are smooth enough for the equations.

Firstly, we have the continuity of mass:

dp
— +V-(pv)=0
5 TV (V)
The first term indicates the rate of change of mass at a point, and the second term represents
the flux of mass leaving that point.

Secondly, we can use Newton’s second law to derive a law of balance of momentum. This

can be written as:
Dv

"Dt ~
where f is the total force per unit volume. Here we must use the total derivative D/Dt = £ +(V-v)
since we are referencing the rate of change of the piece of fluid that is flowing with velocity v.

e Conservative forces can be written as the gradient of a potential: —V¢.
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e In an ideal fluid, the only forces are due to the pressure, —Vp and the external body forces,
pb where b is the body force per unit mass.

e In a real fluid there are additional forces due to viscosity. In the Navier-Stokes equation the
viscous term is proportional to the Laplacian of the velocity:

Dv

- = b 2
oy Vp + pb +nV*<v

For more details, see [AJC93].

3.2 Two densities

Experimentally, physicists noticed that the existence of two components does not mean distin-
guishable fluids, since the superfluid behavior is not eliminated when He-II is filtered through the
capillary! Therefore, these components can transform into each other, as if each particle had both
natures.

This duality was studied by Elepter Andronikashvili in 1946. He constructed a stack of finely
separated disks, which he attached to the ceiling of the experimental cell forming a torsional os-
cillator. The frequency of oscillation is w = /k/I, where & is the stiffness coefficient of the string
and I is the moment of inertia of string and disks. By measuring the frequency we can find the
moment of inertia, he noticed that while the viscous fluid contributes to the moment of inertia,
the superfluid component does not. Andronikashvili was thus able to measure the fraction that
remained viscous, establishing the dependence of this ratio on temperature.

It is then concluded that the total density can be understood as the sum of superfluid component
(non-viscous and does not allow temperature gradients) and a normal (viscous) component.

p=ps+tpn
The superfluid part appears at lambda temperature and increases its presence with decreasing
temperature until at near zero temperature the normal part is negligible. The normal component
has non-zero thermal resistance, but this acts in parallel with the other, resulting in the disconti-
nuity of thermal gradients observed in T).

It should be emphasized that the fraction of each component is a function of temperature only
(at a fixed pressure). If you had more normal component concentration in one part of the fluid
then this would imply a thermal gradient which we have concluded is impossible.

3.3 Superfluid, microscopically

Let’s understand why the two-fluid model is justified under quantum physics. Recall our discussion
on Bose-Einstein condensates. The superfluid is a many-particle system which similar to a BEC is
at a low temperature. Each individual particle may oscillate between different states, but at any
one moment, most of them are in the ground state.

In a similar way that a macroscopic description of fluid dynamics treats the fluids like contin-
uous substances with a velocity and density defined at each point, it is natural to describe the
superfluid macroscopically by having two velocities and two densities associated with the macro-
scopic wave function, on the one hand, and the thermal fluctuations, on the other.
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The reason that the two components are indistinguishable is that any one particle can oscillate
between forming part of the superfluid and the normal fluid. It is the statistical fraction of
particles in the ground state that provide the superfluid density, ps. Since ng/N only depends on
the temperature, it makes sense that ps/p would too.

3.4 Equations of superfluids

The main objective of this section is to find the correct equations for both components of Helium-II.
Given the two components of Helium-II, we can also separate the current density:

j = pPsVs + PnVn-

From the previous section we know that if we had momentarily a point with low superfluid
density, this would be a hot spot, but quickly the thermal irregularity would be removed implying
a net incoming flow of superfluid. In short, the superfluid flows from the cold side to the hot spot.
Thermodynamically, this can only mean that this part carries zero entropy, so there can be no
heat flow from cold to hot.

The lambda peak, zero entropy, frictionless flow, together with the increase of condensed (su-
perfluid) particles with decreasing temperature, leads us to conclude that we have before us a
Bose-Einstein condensate!

The normal component presents a nature that can be interpreted as the gas of Bogoliubov
excitations on top of the condensate.

We recall the hydrodynamic equation for a condensate for the superfluid component. Also
known as the Euler equation (1):

Ovg
ot

Where p is the chemical potential, which we derive thermodynamically as follows. The chemical
potential in terms of pressure and temperature is related with the Gibbs energy:

1
+ (vs-V)vs =——Vpu
m

G(N,p,T) = Nu(p,T)
Where N is the number of particles. In a differential form:

+ %8\ i1 = vap— sar
r OT|,

oG

We have used the well-known definition of Gibbs energy and the relation:
G=VP—-ST-TS=uN

Therefore, writing
S
= (N v = —
p=Nm)/ s mN
We finally have

Vi = %Vp —msVT

Now, by direct substitution:
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ot

However, the whole fluid has viscosity, so we need the Navier-Stokes equation:

1
+ (vs - V)vs = —;Vp +sVT (1)

Ps (a(;;s + (s V)VS> +on (%": + (v, - V)W) = —Vp+n.V?v, (IT)

where 7, is the viscosity of the normal component.

Subtracting the equation for the superfluid part (I) from the equation of the entire fluid (IT) in
order to isolate the hydrodynamic equation of the normal component:

vy, s
Pn ( gt + (Vn : V)Vn> = ('?0 - 1) Vp — pssVT + nnVQVn

Here the four unknowns are ps, pn, Vs, and v,. Therefore, we need two more equations. One
of them is the continuity equation dp/dt + V - j = 0, where we define j = psvs + pnvn. Note
that we impose conservation for the total mass density instead of doing it for both components
separately, because of the plausible transformation between them. In addition, we can impose the
entropy transport continuity equation 9(ps)/ot = =V - (pv,,).

Now we have closed the system of hydrodynamic equations for He-II, known as the two-fluid
model:

Ps (a(;;s +(vs - V)vs> = f%Vp + pssVT, (2)
o (T 4 6 Vv ) = =LV = VT 4, Vv, 3)
a(ps;tr /m _ g )

A~ -9 pva) o)

This set of equations describe (with the appropriate boundary conditions) all special properties
of He-II. In order to consider external potentials, we can simply add their potential energy per
unit volume to the pressure term.

Finally, it must be remarked that this model is considered phenomenological. Landau and
Tisza did not work out any microscopic interpretation.

4 Superfluid phenomena

In this section we will discuss the most impressive phenomena of superfluid helium. We will try
to understand them by means of the already presented interpretation of the two-fluid model.

4.1 Fountain effect

One of the most fascinating phenomena presented by He-II is the fountain effect. A porous-based
flask is immersed in a bath of He-II so that only the superfluid component can infiltrate the vessel.
A heat source (such as a dissipative wire) is placed inside the flask. This heats the helium, causing
the superfluid part to flow into the hot spot, causing the helium height to rise. This rise can reach
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the top of the bottle, escaping through a small hole made there, so that a fountain is observed. In
short, a temperature gradient leads to a pressure head.

PN

speed (m/s)
0 0.10203040506070809 1

—— | omm—

Figure 8: Simulation of Fountain effect using SPH at [KSP23]

Let’s do some calculations. The pressure gradient can be extracted from equation (2) if we
consider stationary regime, the partial with respect to time in LHS disappears. We assume now
also that there is no fountain and we have a column (this tells us how tall a column would have
to be for there to be no fountain effect), which allows us to simplify vy = 0 so that Ap = psAT,
which is known as the fountain formula of Fritz London. Taking Ap = mgAh, we see that for
a AT ~ Ty the corresponding height would be more than 50 meters, which is much higher than
a common flask. In conclusion, a tiny temperature variation is enough to have a noticeable fountain.

This effect is simulated and studied in [KSP23], where they use the technique smooth particle
hydrodynamics (figure 8).

4.2 Superfluid creep

This phenomenon appears when a cup is immersed in He-II and then removed from the liquid.
Then, the helium inside the cup starts to rise on the inner surface of the cup, and goes down on
the outside, so that it creates a layer covering the entire surface. Continuously, the fluid inside
the cup travels through this coating to the bottom outside of the vessel, where droplets form and
eventually drip out, emptying the vessel. In addition, the surfaces remain covered with a thin
helium film after this process. The tendency of the fluid to cover the entire surface with which it
comes into contact is called superfluid creep.

Superfluid creep is the consequence of the property of helium to maintain capillary flow through
narrow channels. With a regular fluid (such as water), a meniscus is also observed due to the adhe-
sion of the liquid with the vessel wall. However, as this layer is very narrow, there is an impediment
to viscous flow. In addition, this film is very unstable in the face of temperature variations that
evaporate and destabilize it. The capillary flow capability and superb thermal conductivity of
He-II allow it to avoid these restrictions. Superfluid flow is possible, allowing the two phases to
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rise (remember that they are inseparable).

Figure 9: Capture of superfluid creep

Source: https://funsizephysics.com/superfluid-helium-black-holes/

4.3 Second sound

The phenomenon of second sound was first described by Lev Landau in 1941. [Lan4l] So far, we
have described several phenomena related to the unusual heat propagation in He-II, such as the
absence of boiling, the fountain effect or superfluid creep. In normal fluids, the heat equation is one
of diffusion giving rise to dissipative processes in which excess heat is transported over a distance
that grows with the square root of time. However, in He-II, this heat propagates as a wave, so
that the distance the heat is transported is linear with time. The temperature wave is called the
second sound. Its velocity characterizes the speed with which the helium makes the temperature
gradients disappear.

5 Our simulation

5.1 The model

Our simulation uses the model from [KSP23] which consists of the following four equations:
Dp

Dr = —pV - v, (6)
% = —%V - (pSXsVns) + gAT + piT, (7)
%: = —%V - (PXnXsVns ® Vns + pI) + %V Dn (8)
%‘;s = XnVVn  Vns — % +sVT )

Where the variables of our simulation p, s, v, v are the density, specific entropy, coflow velocity,
and superflow velocity, respectively. T, p, xn,Xs are the temperature, pressure, and the mass
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fractions of normal and superfluid components. g > 0 and 8 > 0 are the dynamic viscosity and
diffusion parameters respectively,

D, = 1/2(Vvy + Vv —n7)
is a normal velocity deformation tensor, and
¢ = BIVT|? + 2Dy |?

is the dissipative power.

The coflow velocity v and counterflow velocity vys satisfy the following relations:
V = XnVn + XsVs
Vns = Vn — Vg
The equations of the model contain convective derivatives with respect to the overall coflow velocity
D¢ 9¢
Dt = ot

This is the difference with respect to the Landau-Tisza model where the superfluid velocity is
convected only by itself and not by the whole coflow velocity.

+v-Vo¢

Closing the system of equations, requires the knowledge of functions p, T, and x,. Since the
temperature gradient is small, we can use a linearized model, which is valid in a vicinity of a
referential temperature Tj.

Xn = Xno + X (s — 50), (10)
Xs = Xs0 — X/(S - 80)7 (11)
p=1ui(p—po), (12)
S — 80
T=01 T 1
(1+ & )T, (13)

Where X', Xno, Xs0, S0, po, u1 and C are constant values at Ty being u; the speed of sound and C
the heat capacity.

The speed of the second sound us is related to these values by:

2 Xs0Tosh
uy = 20
XnOC

5.2 Method

In this section we briefly describe how we coded our simulation. A spectral method discretizes
functions by expanding them over a set of basis functions.

Project Dedalus [BVO™20] is a flexible framework for spectrally solving differential equations.
We used this framework to spectrally solve the equations of our model over periodic 2D space.

We begin by defining the domain of our problem. Since we won’t be imposing boundary
conditions, our domain is defined with two-dimensional cartesian coordinates over the real Fourier
basis. Next, we define the fields for the variables of our problem p,s,v,vg and the constants
X', Xno, Xs0, So,pP0,u1,C and Ty. Then, we define our initial value problem and the necessary
substitutions to compute the operations of our model. We add the equations of the model and set
the initial conditions. Finally, we build our solver, iterate for a certain simulation time and plot
the results.
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5.3 Simulations

In this section we show some results of the programming work we have done. In each simulation,
we can see the manifestation of some property of helium-II discussed throughout this paper.

5.3.1 Simulation 1: First and second sound

In this first simulation we aim to observe the first and second sound and compare their velocities.

We found that if we set the initial velocity to v = (19", 0) a density and an entropy gradient
is generated at he x = 0 line. In the density field, this gradient forms into a high density wave
traveling to the right and a low density wave traveling to de left. We measured the speed of these
waves to be around 40 m/s (since they take around 0.16 s to travel a distance of 27) which matches
the speed of sound. Similarly, in the entropy field we see a high entropy wave traveling to the right
and a low entropy wave traveling to the left, the speed of these waves is around 19 m/s which
matches the speed of the second sound which is 18.8 m/s.

5.3.2 Simulation 2: Peak in density

In the next two simulations, we will explore what happens when we add a perturbation to the
density or entropy field.

In simulation 2 we set the initial density to p = po+e~ 197" and observed how this perturbation
in the density field creates a perturbation in the entropy field. In the density field, the peak in
density divides in two high density waves, one traveling to the left and the other one traveling to
the right.

In the entropy field, at the beginning we see an increase in entropy at the origin followed by a
zone of low entropy which is then followed by another zone of high entropy. Then, as the simulation
advances, we observe two waves in each direction, one of the form of a high to low perturbation
and the other of the form of a low to high perturbation. One of these waves follows the density
waves, traveling at the speed of sound and the other one stays behind, traveling at the speed of
the second sound.

In figure 11 we can see some snapshots of the simulation.

5.3.3 Simulation 3: Peak in entropy

In simulation 3 we set the initial entropy to s = sg + e~ 102%,

In figure 12 we can see a similar phenomenon to simulation 2, in this case, there are two waves
in the density field, one follows the entropy traveling at the speed of the second sound and the
other travels ahead of it at the speed of sound.

5.3.4 Simulation 4: Standing waves

In this simulation we set the velocity field to v = (0.1 cos(y), —0.1cos(x)) and found that both
the density and the entropy fields oscillate in a certain pattern. If we measure the frequency of
these oscillations, the density field has a frequency of around 8.8 Hz and the entropy field has a
frequency of around 4 Hz. Since the oscillations are of the form cos(z + y) — cos(x — y) we found
reasonable that the wavelength would of v/27 m. With this assumption, we find that the velocity
of the waves in the density field is 39 m/s and the velocity of the entropy waves is 17.7 m/s. This
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result agrees with the known speeds of the first sound (40 m/s) and the second sound (18.8 m/s).

Another property of superfluids that we can observe in this simulation is that the superfluid
component is irrotational. In figure 13 we can see some snapshots of this simulation.

5.3.5 Simulation 5: Fountain effect

The objective of this simulation is to represent the fountain effect. As initial conditions, we set
the entropy field to s, + 100e=(=*+¥") | With these conditions, we can clearly see the flow of the
superfluid component towards the hot spot thus flattening the gradient of entropy and increasing
the pressure and density. In figure 14 we have some images from this simulation.

6 Conclusion

In this project, we have seen a great variety of unusual and exciting behaviors of superfluid helium
and how they can be modeled using a quantum theory of Bose-Einstein condensation. We also
put the theories to the test by simulating such a fluid in a two-dimensional periodic environment,
confirming some of these properties. We have been able to verify the phenomenon of second sound
and confirmed that its velocity is roughly one half of that of first sound. In addition to this, we
confirmed the thermomechanical effect and that the superfluid is irrotational. Some properties,
such as superfluid creep and the dual viscous-inviscid nature of the fluid were outside of the scope
of our simulation, since we had no boundary conditions in place and the simulation was only in
two dimensions. Quantum vortices were also not present due to the macroscopic approximations
made.
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A Appendix: Simulation snapshots
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Figure 10: Snapshots from simulation 1
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Figure 13: Snapshots from simulation 4
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Figure 14: Snapshots from simulation 5
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